Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 43(30): 5483-5500, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37438107

RESUMO

During the first two postnatal weeks, intraneuronal chloride concentrations in rodents gradually decrease, causing a shift from depolarizing to hyperpolarizing GABA responses. The postnatal GABA shift is delayed in rodent models for neurodevelopmental disorders and in human patients, but the impact of a delayed GABA shift on the developing brain remains obscure. Here we examine the direct and indirect consequences of a delayed postnatal GABA shift on network development in organotypic hippocampal cultures made from 6- to 7-d-old mice by treating the cultures for 1 week with VU0463271, a specific inhibitor of the chloride exporter KCC2. We verified that VU treatment delayed the GABA shift and kept GABA signaling depolarizing until DIV9. We found that the structural and functional development of excitatory and inhibitory synapses at DIV9 was not affected after VU treatment. In line with previous studies, we observed that GABA signaling was already inhibitory in control and VU-treated postnatal slices. Surprisingly, 14 d after the VU treatment had ended (DIV21), we observed an increased frequency of spontaneous inhibitory postsynaptic currents in CA1 pyramidal cells, while excitatory currents were not changed. Synapse numbers and release probability were unaffected. We found that dendrite-targeting interneurons in the stratum radiatum had an elevated resting membrane potential, while pyramidal cells were less excitable compared with control slices. Our results show that depolarizing GABA signaling does not promote synapse formation after P7, and suggest that postnatal intracellular chloride levels indirectly affect membrane properties in a cell-specific manner.SIGNIFICANCE STATEMENT During brain development, the action of neurotransmitter GABA shifts from depolarizing to hyperpolarizing. This shift is a thought to play a critical role in synapse formation. A delayed shift is common in rodent models for neurodevelopmental disorders and in human patients, but its consequences for synaptic development remain obscure. Here, we delayed the GABA shift by 1 week in organotypic hippocampal cultures and carefully examined the consequences for circuit development. We find that delaying the shift has no direct effects on synaptic development, but instead leads to indirect, cell type-specific changes in membrane properties. Our data call for careful assessment of alterations in cellular excitability in neurodevelopmental disorders.


Assuntos
Cloretos , Hipocampo , Animais , Camundongos , Humanos , Cloretos/metabolismo , Hipocampo/fisiologia , Interneurônios/fisiologia , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo , Transmissão Sináptica/fisiologia
2.
eNeuro ; 9(6)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36635254

RESUMO

Intraneuronal chloride concentrations ([Cl-]i) decrease during development resulting in a shift from depolarizing to hyperpolarizing GABA responses via chloride-permeable GABAA receptors. This GABA shift plays a pivotal role in postnatal brain development, and can be strongly influenced by early life experience. Here, we assessed the applicability of the recently developed fluorescent SuperClomeleon (SClm) sensor to examine changes in [Cl-]i using two-photon microscopy in brain slices. We used SClm mice of both sexes to monitor the developmental decrease in neuronal chloride levels in organotypic hippocampal cultures. We could discern a clear reduction in [Cl-]i between day in vitro (DIV)3 and DIV9 (equivalent to the second postnatal week in vivo) and a further decrease in some cells until DIV22. In addition, we assessed alterations in [Cl-]i in the medial prefrontal cortex (mPFC) of postnatal day (P)9 male SClm mouse pups after early life stress (ELS). ELS was induced by limiting nesting material between P2 and P9. ELS induced a shift toward higher (i.e., immature) chloride levels in layer 2/3 cells in the mPFC. Although conversion from SClm fluorescence to absolute chloride concentrations proved difficult, our study underscores that the SClm sensor is a powerful tool to measure physiological changes in [Cl-]i in brain slices.


Assuntos
Cloretos , Estresse Fisiológico , Animais , Feminino , Masculino , Camundongos , Cloretos/metabolismo , Ácido gama-Aminobutírico/farmacologia , Neurônios/fisiologia , Receptores de GABA-A
3.
Mol Neurodegener ; 16(1): 47, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34266459

RESUMO

BACKGROUND: Microglia are active modulators of Alzheimer's disease but their role in relation to amyloid plaques and synaptic changes due to rising amyloid beta is unclear. We add novel findings concerning these relationships and investigate which of our previously reported results from transgenic mice can be validated in knock-in mice, in which overexpression and other artefacts of transgenic technology are avoided. METHODS: AppNL-F and AppNL-G-F knock-in mice expressing humanised amyloid beta with mutations in App that cause familial Alzheimer's disease were compared to wild type mice throughout life. In vitro approaches were used to understand microglial alterations at the genetic and protein levels and synaptic function and plasticity in CA1 hippocampal neurones, each in relationship to both age and stage of amyloid beta pathology. The contribution of microglia to neuronal function was further investigated by ablating microglia with CSF1R inhibitor PLX5622. RESULTS: Both App knock-in lines showed increased glutamate release probability prior to detection of plaques. Consistent with results in transgenic mice, this persisted throughout life in AppNL-F mice but was not evident in AppNL-G-F with sparse plaques. Unlike transgenic mice, loss of spontaneous excitatory activity only occurred at the latest stages, while no change could be detected in spontaneous inhibitory synaptic transmission or magnitude of long-term potentiation. Also, in contrast to transgenic mice, the microglial response in both App knock-in lines was delayed until a moderate plaque load developed. Surviving PLX5266-depleted microglia tended to be CD68-positive. Partial microglial ablation led to aged but not young wild type animals mimicking the increased glutamate release probability in App knock-ins and exacerbated the App knock-in phenotype. Complete ablation was less effective in altering synaptic function, while neither treatment altered plaque load. CONCLUSIONS: Increased glutamate release probability is similar across knock-in and transgenic mouse models of Alzheimer's disease, likely reflecting acute physiological effects of soluble amyloid beta. Microglia respond later to increased amyloid beta levels by proliferating and upregulating Cd68 and Trem2. Partial depletion of microglia suggests that, in wild type mice, alteration of surviving phagocytic microglia, rather than microglial loss, drives age-dependent effects on glutamate release that become exacerbated in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Técnicas de Introdução de Genes/métodos , Microglia/metabolismo , Placa Amiloide/patologia , Transmissão Sináptica/fisiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Humanos , Camundongos
4.
Neurosci Biobehav Rev ; 124: 179-192, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33549742

RESUMO

GABA is the major inhibitory neurotransmitter that counterbalances excitation in the mature brain. The inhibitory action of GABA relies on the inflow of chloride ions (Cl-), which hyperpolarizes the neuron. In early development, GABA signaling induces outward Cl- currents and is depolarizing. The postnatal shift from depolarizing to hyperpolarizing GABA is a pivotal event in brain development and its timing affects brain function throughout life. Altered timing of the postnatal GABA shift is associated with several neurodevelopmental disorders. Here, we argue that the postnatal shift from depolarizing to hyperpolarizing GABA represents the final shift in a sequence of GABA shifts, regulating proliferation, migration, differentiation, and finally plasticity of developing neurons. Each developmental GABA shift ensures that the instructive role of GABA matches the circumstances of the developing network. Sensory input may be a crucial factor in determining proper timing of the postnatal GABA shift. A developmental perspective is necessary to interpret the full consequences of a mismatch between connectivity, activity and GABA signaling during brain development.


Assuntos
Neurônios , Ácido gama-Aminobutírico , Encéfalo , Cloretos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...